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DISTINGUISHING FEATURES OF ONE MODEL OF AN ELASTIC SOLID ASSOCIATED

WITH THE LONG-RANGE INTERACTION AT THE MOLECULAR LEVEL

UDC 539.3L. M. Minkevich

A model of an elastic solid in the form of a system of elastically connected rigid elements
is proposed. It is shown that the long-range interaction should be taken into account. The
mathematical model proposed is, in essence, the physical model of a solid, which substantially
broadens the range of its application.

Introduction. In [1], the author considered the mathematical model of a thin plate in the form of
a system of elastically connected rigid elements. In the present paper, the physical nature of the long-range
interaction of the model elements is studied. It is shown that the model can be constructed for any solid (not
only for a plate). An example of the application of the model to problems of linear and nonlinear elasticity
is given.

1. Some Remarks on the Interaction at the Microscopic Level. Leibfrid [2] considered
comprehensively the mechanical interaction between molecules in a crystal. We point out some statements
that are of interest for the present study

The character of the interaction between two atoms in a crystal lattice is illustrated in Fig. 1, which
shows the potential energy ϕ versus the interatomic distance x (a is the lattice constant and M is the inflection
point). According to [2], in calculating the macroscopic parameters (eigenfrequencies and elastic constants),
it is necessary to take into account the interaction of the given atom not only with its nearest “neighbors,”
but also with remote “neighbors.” We note that the long-range interaction is typical of many metals and
dielectrics. For small deviations from the state of equilibrium, the forces can be assumed to be proportional
to the displacements of the atoms. This implies that at the molecular level, the interaction can be modeled
by elastic springs. In this case, the stiffness of the springs is given by C = dF/dx, where F is the magnitude
of the force (Fx = −dϕ/dx). Beyond the inflection point M , the stiffness becomes negative and decreases
rapidly as x increases. According to [2, p. 131], for certain metals with a simple lattice, the stiffness of a
spring that connects the atom to the second “neighbor” is tenfold smaller than the stiffness of a spring that
connects it to the first “neighbor”; the ratio of the stiffnesses of the third and first “neighbors” is equal
to 0.08.

We consider the model of a solid in the form of a system of elastically connected rigid elements.
We show that, in accordance with the character of the interaction at the molecular level, the elastic bonds
(springs) must connect each element not only to its nearest “neighbors,” but also to remote “neighbors.” This
is the fundamental distinguishing feature of the model.

Let us consider a small solid body B1 of a definite shape, say, a parallelepiped. The dimensions of
the body are chosen so that it can be considered as a set of interacting molecules. In this case, both the
classical approach (for analysis of ultrasonic oscillations) and the quantum-mechanical approach (for analysis
of thermal process) are applicable. We assume that the body is the single crystal of a cubic system with a
simple elementary lattice (in our opinion, this restriction does not affect the final results).
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Fig. 1

Fig. 2

We construct the physical model M1 of the body B1. The construction involves the following three
stages.

1. We construct a cube (Fig. 2) for each group of eight atoms (elementary cell). Each atom in the cube
is connected to all the atoms of the neighboring cubes and to those of the cubes adjacent to the neighboring
cubes by means of springs modeling the interatomic interaction. The atoms are fixed in each cube. The
number of cubes is denoted by N .

2. The atomic mass is uniformly distributed in the cube. The ends of the springs are fixed, and the
substance of the cube imposes no restrictions on the deformation of the springs. The dimensions of the cube
are chosen in such a way that its central moments of inertia are equal to the sum of the moments of inertia
of the molecules. This implies that the cube edge is given by b = a

√
3 [a is the intermolecular distance (the

lattice constant)].
3. Since the substance of the cube is assumed to be immovable relative to the cube, we can assume that

the attachment points of the springs are displaced at the cube surface along the line of strings, whereas the
orientation and stiffnesses of the springs remain the same. If the line of the spring moving to the “neighbor
of the neighbor” intersects the space of the latter, we assume that this space imposes no restrictions on the
deformation of the spring. In the case of relatively large displacements of the cubes (static problem), the
attachment points of the springs are displaced.

The model M1 is approximate, since the displacements of eight molecules are determined by the
displacement of the cube, i.e., the number of degrees of freedom is decreased. We show that the lower
frequencies of the model M1 are close to those of the body B1 with sufficient accuracy. (By sufficient
accuracy we mean the real accuracy of calculations in the theory of elasticity, which does not exceed the
accuracy at which the elastic constants are determined experimentally.)

In the general case, the proof of this statement is laborious; therefore, we focus our attention on
examples and qualitative reasoning. It is known that the lower frequencies of a system of elastically connected
rigid units are determined mainly by the stiffness of the most pliable springs. Even though the stiffnesses of
the springs differ by tenfold or more, the springs of large stiffness have little effect on the lower frequencies
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and, therefore, they can be replaced by rigid connections. We consider an example. A linear chain consists of
12 point masses of 0.1 kg each. The masses are connected to an immovable base and to one another by means
of 12 springs with alternating stiffnesses of 100 N/m and 1000 N/m (beginning with the spring of stiffness
100 N/m). The eigenfrequencies are as follows: 0.824, 2.435, 3.925, 5.227, 6.242, 6.893, 22.53, 22.66, 22.89,
23.15, 23.39, and 23.55 Hz. Replacing the springs of stiffness 1000 N/m by rigid connections, we obtain a
system with six degrees of freedom whose eigenfrequencies are 0.858, 2.524, 4.043, 5.328, 6.303, and 6.911 Hz.
The first frequencies of the two systems differ by about 4%. Obviously, as the number of degrees of freedom
of the initial system B1 increases (and, hence, N increases), the initial part of the spectrum of the model M1
is extended, which can be assumed to coincide with the initial part of the spectrum of the body B1, and the
accuracy of calculations is improved.

We now consider the body B2, which is geometrically similar to the body B1 and whose dimensions
exceed the B1 dimensions considerably (by a factor of λ). Its material can be assumed to be continuous (the
microstructure is not taken into account). We also assume that the B2 is a single crystal without defects and
inclusions, as is B1.

We construct the physical model M2 of the body B2. The B2 is modeled by a system of N rigid cubes
connected to one another by springs as in M1. The set of springs is the same as in M1, but their stiffnesses
are not known in advance. The density of the M1 and M2 material is the same, and their dimensions differ
by a factor of λ.

We show that the model M2 can be used to calculate the mechanical characteristics of the body B2.
1. The eigenfrequency spectra (at least, their low-frequency regions) of B1 and B2 are similar. Indeed,

the eigenfrequencies are determined by the number of wavelengths or their parts placed on a certain charac-
teristic dimension. For example, for free vibrations of a parallelepiped, three lower eigenfrequencies are equal
to the ratio of the velocity of sound to the wavelengths (to the doubled lengths of the parallelepiped edges).
Since the velocities of sound in B1 and B2 are the same and the corresponding wavelengths are proportional
to the dimensions of the bodies, the ratio τ of the corresponding oscillation periods of the bodies B1 and B2
is proportional to the ratio of the linear dimensions, i.e., τ = λ.

2. As was noted above, the lower eigenfrequencies of the body B1 and those of the model M1 coincide.
3. By construction, the models M1 and M2 are geometrically similar and the ratio of the linear

dimensions of the models M1 and M2 is equal to λ. We require that the models be completely similar
physically, i.e., we require that the corresponding masses and times satisfy a certain relation. The stiffnesses
of the M2 springs are undetermined (the grid of the M2 springs is similar to that of the M1 springs). For
similarity, the stiffness ratio is expressed with the use of the dimensional formula for stiffness [C] = [M ]/[T 2].
Hence, we have C2/C1 = (m2/m1)/(t2/t1)2 = λ3/(τ ′)2. Choosing the stiffnesses such that their ratio is equal
to λ, we obtain τ ′ = λ.

4. It follows from the aforesaid that ωi(T2)/ωi(T1) = ωi(M2)/ωi(T1) (i = 1, 2, . . ., i � N), whence
ωi(T2) = ωi(M2). Consequently, the low-frequency parts of the spectra of the body B2 and the model M2
coincide. Thus, the model M2 can serve as a model of B2.

As for the equality ωi(T2) = ωi(M2), we consider it as an approximate equality. The error is due to
the replacement of the stiffest springs in the B1 by absolutely rigid connections in the M1, which implies that
ω(M1) > ω(T1). As the temperature increases (from absolute zero), the inequality becomes weaker inasmuch
as the role played by stiff springs in mechanical processes is reduced.

Since the models M1 and M2 are similar, in the model M2, as in M1, the long-range interaction
is modeled, i.e., each element is elastically connected not only to its nearest “neighbors,” but also to the
“neighbors of the neighbors.” This statement is fundamental: the neglect of the long-range interaction is,
apparently, responsible for the fact that models of this type have not been further developed.
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2. The Model of a Thin Plate (Small Deflections). The author [1] developed the model of a thin
plate in the form of a system of N elastically connected rigid square elements. We list the main parameters
and characteristics of the model.

1. The plate plane is horizontal. Four horizontal-action springs with stiffness S1 are attached to each
side of the element (two springs are attached to the upper part of the side and the other two are attached
to the lower part to model the bending moment). Moreover, two vertical-action springs with stiffness C1 are
attached to each side of the element. These springs connect the adjoining sides of the neighboring elements.
At each angular point of the element, one vertical-action spring with stiffness C2 and four horizontal-action
springs with stiffness S2 are attached [two of the latter springs act in the direction of one side of the element,
whereas the other two act in the direction of the other (adjoining) side]. Springs of the types C2 and S2
connect the corners of the given element to the corners of the adjoining element. And, finally, the springs
with stiffnesses S3, S4, and S5 are attached to each side of the element and are arranged in two layers, each
of which contains five springs. They connect the side of the given element to the parallel sides of five remote
elements. The springs are shown schematically in [1].

2. Each element has three degrees of freedom: the vertical displacement and rotations about two
horizontal axes. The frequency equations for the system of elements have the form

3N∑
k=1

Bikqk = ω2
3N∑
k=1

Aikqk (i = 1, 2, . . . , 3N), (1)

where B is the potential-energy matrix, A is the kinetic-energy matrix, and q are the generalized coordinates.
For a continuous plate, we have the equation for the deflection W

∆∆W = ρω2hW/D, (2)

in which ρ is the density, h is the thickness, D = Eh3/[12(1− ν2)], and ∆ = ∂2/∂x2 + ∂2/∂y2.
The stiffnesses of the springs are unknown. They can be found if we require that Eqs. (1) coincide

with Eqs. (2) in the limit (as N →∞) (for details, the reader is referred to [1]).
3. For a square element, the stiffnesses of the springs are as follows: S1 = 1.283 33KD, S2 =

−0.083 33KD, S3 = 0.108 33KD, S4 = −0.166 66KD, S5 = 0.093 75KD, C1 = (4/d2)D, and C2 = (2/d2)D,
where K = 2/h2 and d is the side of the element. These values are used to construct the potential-energy
matrix B. Solving system (1), we obtain the eigenfrequencies and eigenmodes of vibrations. It is noteworthy
that the stiffnesses of two springs that model the long-range action have negative values (as in the case of
interatomic interaction).

An analysis of the model shows its satisfactory accuracy; at least, the accuracy in determining the
lower frequencies is higher than that of the COSMOS M program (in both cases, a clamped plate with a
12 × 12 partition was considered). In determining the tenth and first frequencies, the errors are about 10%
and smaller than 0.1%, respectively.

3. The Model of a Thin Plate (Large Deflections). By construction, the model M2 can be
considered as a physical model. However, the physical model of a thin plate must be applicable to both large
and small deflections. The case of small deflections is considered in Sec. 2, where Eqs. (2) were used only
to determine the stiffness of the model springs [by comparison with Eqs. (1)]. We now show that the model
is applicable to analysis of large deflections in static problems. The following preliminary remarks should be
made.

1. For small deflections, each element has three degrees of freedom. For large deflections, each element
has six degrees of freedom (two horizontal displacements and rotations in the horizontal plane are also taken
into account).

2. In the case of small deflections, the springs of the model can be divided into two groups, namely,
horizontal- and vertical-action springs. However, when the elements rotate, the springs rotate as well; there-
fore, to model large deflections, one should replace the rotating springs by an equivalent system of vertical
and horizontal springs so that the stiffness of the springs will depend on rotations of the elements.
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3. In the case of large deflections, the distances between the elements change in such a manner that
the horizontal (upper and lower) springs undergo elongations of the same sign.

Thus, an equation that describes large deflections of the model must differ from that describing small
deflections. We derive this equation. We recall that the small static deflections are found from the equation

3N∑
i=1

Bikqi = Qk (k = 1, 2, . . . , 3N), (3)

where Q are the generalized external forces.
We assume that the expression for the potential energy of the system of elements has a uniform

quadratic form:

Π =
1
2

6N∑
i=1

6N∑
k=1

Bikqiqk,

where the components of the matrix B depend on the coordinates.
We use the principle of virtual displacements:

−δΠ +
6N∑
m=1

Qmδqm = 0. (4)

Substituting the potential-energy variation

δΠ =
1
2

6N∑
i=1

6N∑
k=1

δ(Bikqiqk) =
1
2

6N∑
i=1

6N∑
k=1

(δBik)qiqk +
6N∑
i=1

6N∑
k=1

Bikqiδqk

into (4), we obtain
6N∑
i=1

6N∑
k=1

Bikqiδqk +
1
2

6N∑
i=1

6N∑
m=1

[(δBim)qiqm] =
6N∑
k=1

Qkδqk. (5)

Substitution of δBim =
6N∑
k=1

∂Bim
∂qk

δqk into (5) gives

6N∑
k=1

[ 6N∑
i=1

Bikqi −Qk +
1
2

6N∑
i=1

6N∑
m=1

∂Bim
∂qk

qiqm

]
δqk = 0.

Hence
6N∑
i=1

Bikqi = Qk + Φk, Φk = −1
2

6N∑
i=1

6N∑
m=1

∂Bim
∂qk

qiqm (k = 1, 2, . . . , 6N). (6)

A series of numerical experiments was performed. The problem of a 120 × 120 mm clamped thin
plate bent by a uniformly distributed load was considered (h is the plate thickness). The plate material
was glass-cloth-base laminate with E = 3 · 1010 Pa and ν = 0.28. Equations (6) were solved iteratively.
A 12 × 12 partition of the plate was used. Table 1 lists calculation results for deflection of the plate center
[σ0 = 2.5 · 104 Pa, W0 is the value calculated by formulas (3) (small deflections and Bik = const), W is the
value calculated by formulas (6) (large deflections), Wtheor is the theoretical value [3], ∆W = Wtheor −W ,
and ∆ = [(W0/W )theor−W0/W ]/(W0/W )theor]. For h = 1.5 mm and the above value of the load σ0, we have
(W0)theor = 0.702 mm. The calculation results are compared with the solution of the problem Wtheor given
in [3], which, in our case, is found from the equation 5.583(Wtheor/h)3 + 71.840(Wtheor/h) = (σ/E)(d/h)4.
For comparison, the values of the deflection W0 predicted by the linear theory are also given. It should be
noted that, for W/W0 > 1.9, the iterative process [solution of Eq. (6)] diverges. This can be attributed to
the fact that the physical model becomes unstable; as applied to the prototype, this can imply the onset of
plastic deformation.
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TABLE 1

h, mm σ/σ0 W0, mm W , mm Wtheor ∆W/Wtheor, % W0/W (W0/W )theor ∆, %

6 64 0.690 0.686 0.702 2.28 1.006 1.008 0.20

320 3.450 3.071 3.138 2.13 1.123 1.128 0.44

640 6.901 5.127 5.196 1.33 1.346 1.362 1,38

960 10.350 6.542 6.642 1.50 1.582 1.599 1.06

1408 15.180 8.092 8.166 0.91 1.875 1.907 1.70

3 8 0.690 0.666 0.693 3.90 1.036 1.022 −1.37

40 3.450 2.580 2.600 0.77 1.337 1.362 1.83

64 5.520 3.423 3.447 0.70 1.623 1.643 1.22

80 6.901 3.890 3.888 −0.05 1.774 1.821 2.58

96 8.280 4.283 4.269 −0.33 1.930 1.990 3.01

1.5 1 0.690 0.616 0.651 5.37 1.120 1.087 −3.03

5 3.450 1.950 1.940 −0.50 1.789 1.840 1.76

6 4.140 2.150 2.135 −0.75 1.926 1.990 3.20

15 2 · 104 13.80 10.617 11.175 5.00 1.302 1.267 2.68

Conclusions. A model of an elastic solid in the form of a system of rigid elastically connected elements
has been developed. The main distinguishing feature of the model is that it is essentially a physical model
and, therefore, it is applicable to a wide range of problems. For example, the plate model in the form of a
system of elastically connected rectangular elements can be used to study the static and dynamic problems of
plates under small and large displacements and plane stresses. The physical model is governed by a system of
algebraic equations (mathematical model). The use of this model can be advantageous in solving a number
of complex problems (for example, in analysis of thick plates and shells).

The elastic connections in the model considered can be determined by analyzing the forces of inter-
atomic interaction, but this problem of applied physics has not yet been solved in a form acceptable for
practice. However, these connections can be determined by applying the model to the simplest cases and
comparing equations of types (1) and (2), as in the case of a thin plate.

The distinguishing feature of the model is modeling of the long-range interaction, for which there are
physical (see Sec. 1) and formal reasons: ignoring the long-range interaction does not allow one to obtain a
reasonably accurate solution, i.e., Eqs. (1) and (2) do not coincide in the limiting case. It is noteworthy that
in the degenerate cases (flexible thread or membrane), the long-range interaction does not occur.
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